Mean approximation by polynomials on a Jordan curve

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the approximation by {polynomials

As usual, p∗ is called a best approximation (b.a.) to f in (or, by elements of) IPγ,n. To give some examples, let X = Lp[0, 1] and set γ(t) = G(·, t), where G(s, t) is defined on [0, 1] × T . With G Green’s function for a k–th order ordinary linear initial value problem on (0, 1] and T = [0, 1), one has approximation by generalized splines. With G(s, t) = e and T = IR, one has approximation by ...

متن کامل

Properties of the Internal Approximation of Jordan ’ s Curve 1

(4) Let G be a Go-board, p be a point of E2 T, and i, j be natural numbers. Suppose 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG. Then p ∈ Intcell(G, i, j) if and only if the following conditions are satisfied: (i) (G◦ (i, j))1 < p1, (ii) p1 < (G◦ (i+1, j))1, (iii) (G◦ (i, j))2 < p2, and (iv) p2 < (G◦ (i, j +1))2. (5) For every non constant standard special circular sequence f holds BDD ...

متن کامل

Approximation of Jordan homomorphisms in Jordan Banach algebras RETRACTED PAPER

In this paper, we investigate the generalized Hyers-Ulam stability of Jordan homomorphisms in Jordan Banach algebras for the functional equation begin{align*} sum_{k=2}^n sum_{i_1=2}^ksum_{i_2=i_{1}+1}^{k+1}cdotssum_{i_n-k+1=i_{n-k}+1}^n fleft(sum_{i=1,i not=i_{1},cdots ,i_{n-k+1}}^n x_{i}-sum_{r=1}^{n-k+1} x_{i_{r}}right) + fleft(sum_{i=1}^{n}x_{i}right)-2^{n-1} f(x_{1}) =0, end{align*} where ...

متن کامل

Approximation by homogeneous polynomials

A new, elementary proof is given for the fact that on a centrally symmetric convex curve on the plane every continuous even function can be uniformly approximated by homogeneous polynomials. The theorem has been proven before by Benko and Kroó, and independently by Varjú using the theory of weighted potentials. In higher dimension the new method recaptures a theorem of Kroó and Szabados, which ...

متن کامل

Approximation by polynomials

1. Introduction 2. The Weierstrass approximation theorem 3. Estimates for the Bernstein polynomials 4. Weierstrass' original proof 5. The Stone–Weierstrass approximation theorem 6. Chebyshev's theorems 7. Approximation by polynomials and trigonometric polynomials 8. The nonexistence of a continuous linear projection 9. Approximation of functions of higher regularity 10. Inverse theorems Referen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1971

ISSN: 0021-9045

DOI: 10.1016/0021-9045(71)90013-x